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DISTRIBUTION OF ELECTRON CONCENTRATION IN A DISCHARGE WITH NONUNIFORM 

IONIZATION OVER THE CROSS SECTION 

R. F. Yunusov UDC 537.525 

We have obtained an analytic solution of the charged particle balance equation for 
the plasma of the positive column of a discharge, with allowance for the radial 
variation of the ionization rate. 

To find the radial distribution of the electron concentration in the positive column it 
is necessary to solve the particle balance differential equation with variable coefficients 
[I]. Solutions of this equation alone [2, 3], and also of a system of equations describing 
the properties of the discharge [4-7], were obtained by numerical and approximate methods. 
In the present article we obtain the distribution of the electron concentration by an analytic 
method. 

We assume that the plasma of a glow discharge consists of neutral particles, singly 
charged positive ions, and electrons. Charged particles are formed by direct ionization, 
and disappear by radial ambipolar diffusion with subsequent wall recombination. The plasma 
is quasineutral, and the discharge parameters are uniform in the axial direction and axisym- 
metric. The charged particle balance for an element of volume 2~rR2dr x I is described by 
the familiar differential equation 

1 d (rD d__n_n~q_vR2n=O. (1) 
r dr \ dr P 

The boundary conditions for this equation are generally written in the form 

n(1) ~ 0, 
dr ]r=o 

For a constant temperature of the gas over the cross section of the discharge cha~er, as 
assumed in the Schottky theory [8], the coefficients Dg and ~ do not depend on the spatial 
coordinate. Actually, there is a certain nonuniformity of the gas temperature in Lhe radial 
direction which depends on the strength of the discharge, the pressure of the gas, the con- 
ditions on the boundary surface, etc. Taking account of the temperature nonuniformity of the 
gas leads to coefficients D~(r) and ~(r) which depend on the radial coordinate. In view of 
the strong dependence of the ionization rate on the ratio E/N, its relative change along the 
radius can exceed the corresponding change of the coefficient of ambipolar diffusion by an 
order of magnitude for the same nonuniformity of the gas temperature. Therefore, in the first 
approximation we assume that the coefficient of ambipolar diffusion is constant and equal to 
a certain average for the temperature range considered. We assume that the ionization rate 
varies parabolically with the radius ~ = ~R[I + (I -- r2)a2], where ~ takes account of the 
degree of nonuniformity of the ionization rate. Then Eq. (I) is written in the form 

r dr ~ d r t  q - ~ [ l ' - I - ( 1 - r 2 ) a ' ] n = O '  (3) 
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Fig. I. Graph of pa = f(a). 

Fig. 2. Radial distributions of the electron con- 
centration calculated for two values of the param- 
eter a. 

where p2 = VRR2/Da" Thus, the problem is reduced to a Sturm--Liouville problem of finding the 
eigenvalues p as a function of the parameter a and the corresponding eigenfunctions which 
satisfy Eq. (3) and condition (2). The transformation 

n (0 = K (@ exp (-- 9/2), y = ~ar ~ (4) 

reduces Eq. (3) to the form 

d'K dK ( ~a ~a 1 ) K = 0 "  (5) 
+ 4- - j+  4 2 

The solution of this differential equation which is finite at r = 0 is the confluent hyper- 
geometric function 

(1  ~a ~a l, ~ar, ) K ( ~ = M  2 4a ~ 4 ' " (6) 

The eigenvalues ~ = f(a) are determined from the solution of the equation 

( I  ~a ~a 1, ~a)=O.  (7) 
M 2 4 a  2 4 ' 

These values can be calculated by using data on the zeros of the function M(a, I, x) in [9]. 
Calculations show that with an increase in the parameter a the values of ~ for which condi- 
tion (7) is satisfied decrease and approach zero. However, the product pc increases. The 
calculated dependence of this product on the parameter a is shown in Fig. i. As a § ~ the 
value of ~a approaches a limit which is determined in the following way. In the limiting 
case a § ~, ~ § O, Eq. (3) takes the form 

I a ( / (8) 
r dr \ dr ] ~ (~a) lim 

This differential equation is known in the theory of convective heat transfer as the Graetz-- 
Nusselt problem. The eigenvalue (Pa)li m = 2.704 and the eigenfunction satisfying Eq. (8) and 
condition (2) were calculated and reported in [10]. Taking account of condition (2), we write 
the general solution of Eq. (3) in the form 

( ~ar2)M (1 9a ~a I ~ar 2) (9) 
n ( r )  = e x p  2 " 2 4 a  2 4 ' ' " 

Figure 2 shows profiles of the electron concentration calculated for the two limiting 
cases a = 0 and a § ~. For other values of the parameter a, 0 < a < ~, the radial distribu- 
tions of charged particles will lie between the curves of Fig. 2. 

The solution (9) can also be written in the form of the 

= ~ b~r , ( l O ) n (r)  2 .  

n ~ O  
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